

132nd Annual TMS Meeting - March 2nd-6th, 2003

Deformation and Failure in Dentin: A Mechanistic and Fracture Mechanics Based Approach

R. K. Nalla 1, J. H. Kinney 2 and R. O. Ritchie 1

¹Materials Sciences Division, Lawrence Berkeley National Laboratory, and,
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720

²Lawrence Livermore National Laboratory, Livermore, CA 94550

with

V. Imbeni, J.J. Kruzic (LBNL), J.S. Stölken (LLNL), M. Staninec (UCSF), G.W. Marshall & S.J. Marshall (UCSF)

Motivation and Significance

- Dentin is the most abundant mineralized tissue in teeth, and is critical for structural integrity
- Fracture and fatigue properties of dentin are an issue of obvious clinical relevance
- Non-carious notches in exposed root surfaces are sites for fracture and fatigue cracking
- Very few fracture mechanics based studies reported in archival literature
- Mechanical properties of dentin have implications for other mineralized tissues, such as bone

Objectives

- Measure the mechanical properties, specifically fracture toughness, fatigue and subcritical crack-growth properties, of dentin, as a function of orientation
- Characterize the micro-mechanisms of fracture in terms of the underlying features, and anisotropy, of the microstructure
- Identify and model the salient toughening mechanisms in dentin
- Establish a mechanism for the fatigue of dentin
- Develop a physical basis for a damage-tolerant life-prediction methodology for teeth

Microstructure of Dentin

- Distinctive feature are 1-2 μm dia. cylindrical tubules, running from the dentin-enamel junction to the soft, interior pulp
- Hydrated composite of nanocrystalline carbonated apatite mineral (~45% vol.), collagen fibrils (~30% vol.) and fluid (~25% vol.)
- Mineral crystallites (5 nm thick) distributed in a scaffold of collagen fibers (50-100 nm dia.)
- Collagen fibrils form a planar felt-like structure oriented perpendicular to the tubules
- A simplified model for other mineralized tissue, such as bone?

Fracture and Fatigue of Dentin: Objectives

- What is the macroscopic fracture toughness of dentin?
- What is the *local* criterion for fracture in dentin?
- Does the highly directional nature of the microstructure affect the toughness and crack growth?
- Mechanistically, what are the origins of toughness in dentin?
 - What effect do the tubules have, either by blunting or deflecting cracks?
 - Can the collagen fibrils promote crack bridging?
 - Are there other salient toughening mechanisms?
- What is the nature of inelasticity ("yielding") in dentin?
- What is the nature of fatigue and cyclic damage in dentin?

Fracture Toughness of Dentin

- Rasmussen et al., (1976 & 1984)
 - first study of the toughness of dentin approach
 - found an orientation dependence on toughness material was tougher parallel to tubules than perpendicular to tubules
 - toughness was measured by "work of fracture"; results are size and geometry dependent
- el Mowafy et al., (1986)
 - first fracture-mechanics based study using C(T) samples
 - measured K_c = 3.08 MPa \sqrt{m} for fracture parallel to tubules
 - overestimate of toughness as notched, not precracked, sample used
- Ruse *et al.*, (2001)
 - used so-called "Notchless Triangular Prism" technique
 - reported orientation-dependent values of $K_c = 1.13 2.02 \text{ MPa}\sqrt{\text{m}}$
 - non-standard test configuration

Fracture Toughness – Notch vs. Precrack

Definite effect of precrack acuity on K_c :

- Notch toughness = $2.7 \text{ MPa}\sqrt{\text{m}} \text{ (s.d. 0.1)}$ 320 J/m⁻² (s.d. 0.4)
- Precrack toughness = 1.8 MPa \sqrt{m} (s.d. 0.1) 140 J/m⁻² (s.d. 0.4)

Estimation of Critical Flaw Sizes

- Lower estimate of K_c < 2 MPa√m significantly reduces the critical flaw size in dentin
- For comparison:
 - dental cements $K_c \sim 0.1-0.5 \text{ MPa}\sqrt{\text{m}}$
 - amalgams $K_{\rm c} \sim 0.1$ -1.6 MPa $\sqrt{\rm m}$
 - dental composites K_c ~ 0.6-2.0 MPa√m
- However, catastrophic fracture is not the only problem - subcritical crack growth, e.g., by fatigue, is also an issue
- Life prediction based on time (or cycles) for flaws to grow subcritically

Stress- vs. Strain-Controlled Fracture

- Fracture of mineralized tissue invariably modeled as strain-controlled
- However, there is no experimental support for this hypothesis

For fracture at a notch in a material displaying some degree of inelasticity

- stress-controlled fracture: initiates ahead of the notch
- strain-controlled fracture: initiates at the notch

Double-Notch Four-Point Bend Test

Notch

- Two identical notches in a four-point bend bar
- Constant bending moment on both notches
- One notch breaks the other freezes local microstructural events just prior to fracture
- A good way to obtain stable cracks in dentin

 Crack initiation directly at the notch root provides definite evidence that fracture in dentin is strain-controlled

Nature of Inelasticity in Dentin

uniaxial tensile test

Inelastic deformation results from:

- plastic deformation (in the collagen fibrils)
- microdamage (at the peritubular cuffs)
- poro-elasticity (from fluid in the tubules)

Plastic Damage vs. Brittle Damage

- Finite element simulation, using NIKE3D, of deformation by plasticity, using Plastic
 Damage (PD) model (Niebur et al., 2000), and microcracking, using Brittle Damage (BD)
 model (Govindjee et al., 1995)
- For both pressure-insensitive plasiticity and pressure-sensitive microcracking, notch-field stress and strain distributions are *qualitatively* similar

Toughness of Dentin – Effect of Orientation

Perpendicular

In-plane Parallel

Inclined Perpendicular

compact-tension C(T) specimen

Anti-plane Parallel

Inclined Parallel

Anisotropy in Toughness in Dentin

perpendicular orientation

Toughness anisotropic with tubule orientation

anti-plane parallel orientation

Toughening Mechanisms

crack deflection

microcracking

Toughening Mechanisms in Dentin

Crack Deflection (very localized)

Uncracked Ligament Bridging $(K_b^{ul} \sim 0.1\text{-}0.4 \text{ MPa}\sqrt{\text{m}})$

Microcracking $(K_{\text{mic}} \sim 0.3 \text{ MPa}\sqrt{\text{m}})$

Collagen Fibril Bridging $(K_b^f < 0.1 \text{ MPa}\sqrt{\text{m}})$

X-Ray Computed Tomography

clear three-dimensional evidence of uncracked ligament bridging

imaged at the Stanford Synchrotron Radiation Laboratory - SSRL, Stanford Linear Accelerator Center - SLAC

Toughening Mechanisms in Bone

Uncracked Ligament Bridging

 $K_b^{\text{ul}} \sim 0.3 \text{ MPa}\sqrt{\text{m}}$ (in-plane longitudinal)

Fibril Bridging

 $K_{\rm b}^{\rm f} \sim 0.07 \; {\rm MPa} \sqrt{{\rm m}} \; \; (anti-plane longitudinal)$

Crack Deflection

 $K_{\rm d} \sim 2.7 \, \text{MPa} \, \text{/m}$ (transverse)

Toughening Mechanisms

Crack Deflection

$$\begin{aligned} k_1(\alpha) &= c_{11}(\alpha) \; K_1 + c_{12}(\alpha) \; K_{||} \\ k_2(\alpha) &= c_{21}(\alpha) \; K_1 + c_{22}(\alpha) \; K_{||} \end{aligned}$$

$$K_{\rm d} = (k_{12} + k_{22})^{1/2}$$

(Bilby et al., 1978; Cottrell & Rice, 1980)

Microcracking

$$K_{\text{mic}} = 0.22 \ \epsilon_{\text{m}} E' f_{\text{m}} I_{\text{m}}^{1/2} + \beta f_{\text{m}} K_{\text{c}}$$

(Evans & Fu, 1985: Hutchinson, 1987)

Dentin

Bone

very localized (perpendicular)

2.7 MPa√m (transverse)

0.3 MPa√m (both)

Bridging

Uncracked Ligament $K_b^{\text{ul}} = -f_{\text{ul}}K_{\text{l}}[(1+l_{\text{l}}/rb)^{1/2}-1]/r$ $[1-f_{...}+f_{...}(1+I_{...}/rb)^{1/2}]$

(Shang & Ritchie, 1989)

0.1-0.4 MPa√m (parallel)

0.3 MPa√m (in-plane long.)

Collagen Fibril **Bridging**

 $K_{\rm b}^{\rm f} = 2 \, \sigma_{\rm b} \, f_{\rm f} \, (2 \, I_{\rm f} \, / \, \pi)^{-1/2}$

(Evans & McMeeking, 1986)

<0.1 MPa√m (parallel)

0.07 MPa√m (anti-plane long.)

Fatigue of Dentin

- Tonami et al., (1997)
 - 10⁵-cycle tensile fatigue strength measured for *bovine* dentin
 - Fatigue strength of 47-51 MPa found: lower value for older animals
 - Tests only over narrow range of purely tensile load ratios, $R \sim 0.15$ -0.25
 - tests conducted at 37°C in water; demineralization concerns
 - test duration too short; typical teeth loaded more than 10⁶ times annually
- Arola et al., (2002)
 - preliminary crack-growth data for bovine dentin
 - zero-tensile (R ~ 0) cycling at 25 Hz in a saline bath at 21°C
 - rates of fatigue-crack growth highest perpendicular to the tubules
- Absolutely no data on human dentin

Stress-Life (S/N) Approach

- cantilever-beam geometry
- all tests in conducted in Hank's Balanced Salt Solution (HBSS)
- all tests performed on an ELF® 3200 series acoustic testing machine (EnduraTEC Inc., Minnetonka, MN)
- three frequencies, 2 Hz, 10 Hz, 20 Hz; wide range of load ratios, R = -1 to 0.5

S/N Results on Human Dentin

- clear evidence of a susceptibility of human dentin to fatigue
- "metal-like" fatigue S/N behavior with frequency-dependent fatigue limit at 10⁶-10⁷ cycles of ~25 and 45 MPa
- fatigue lives, in terms of cycles to failure are shorter at lower frequency

Fractography

Crack Growth Direction

 Morphology of the fracture surfaces during fatigue-crack propagation essentially identical to overload (catastrophic) failure

Fatigue surface

Overload surface

Effect of Mean Stress (Load Ratio)

- cantilever bending
- R ratios: 0.1, 0.5 and -1
- 10 Hz, 37°C, HBSS

Orientation Effects

- microstructure affects both LCF and HCF behavior
- lower fatigue limits for *parallel*, as compared to *perpendicular*, orientation
- orientation effect in fatigue contrary to that seen for toughness

Fatigue-Crack Growth in Human Dentin

 decay in stiffness used to estimate crack lengths

- Paris power-law relationship, $da/dN = C \Delta K^m$, where exponent $m \sim 8.76$
- Estimated fatigue threshold, $\Delta K_{TH} \sim 1.06$ MPa \sqrt{m} , $\sim 60\%$ of the fracture toughness

Damage-Tolerant Lifetime Prediction

Integrating the Paris equation, from an initial, a_o, to final, a_c, crack size:

$$N_{\rm f} = 2 (f(a/b)\Delta\sigma_{\rm app})^{-m} (m-2)^{-1} C^{-1} \pi^{-m/2} [a_{\rm o}^{1-m/2} - a_{\rm c}^{1-m/2}]$$

- for initial flaw size, a_o ~ 100 μm, projected life at σ_{app} ~ 20 MPa over a billion cycles
- for a 600 μm flaw, projected life drops to ~3.6 million cycles, or 3 to 4 years
- for a 900 μm flaw, projected life as low as a few months
- for *in vivo* stresses of 5-20 MPa, small flaws in teeth, \sim 250 μ m, will not radically affect their structural integrity, as predicted fatigue lifetimes exceed patient lifetimes

Summary

- First accurate fracture toughness of human dentin measured.
- Critical fracture event in dentin consistent with a strain-based criterion.
- Effect of orientation on toughness defined; lowest toughness measured for fracture perpendicular to dentinal tubules.
- Toughness in dentin arises from extrinsic toughening mechanisms: collagen fibril and uncracked ligament bridging, microcracking, crack deflection.
- Human dentin shown to be susceptible to fatigue failure.
- "Metal-like" *S/N* behavior seen, sensitive to both frequency and mean stress, with a 10⁶-10⁷ cycle fatigue limit of 25-45 MPa.
- Rudimentary life-prediction analyses indicates that flaws of up to 250 µm in size will not radically affect structural integrity under typical physiological loads.